CERES Derived Narrowband Fluxes for Correcting 3D Radiative Effects in MODIS Aerosol Retrieval Near Clouds

Guoyong Wen, GESTAR/Morgan State University & GSFC/Code 613

Alexander Marshak, Norman Loeb, Lorraine Remer, Rob Levy, Tamas Varnai, Robert Cahalan

Clear areas near clouds

Motivation:

- Help satellite studies of aerosol-cloud interactions
- Aerosol remote sensing near clouds is challenging
- Excluding areas near-cloud risks biases in aerosol data

from MODIS: 60% of all clear sky pixels are located 5 km or less from all clouds

from CALIPSO: 50% of all clear sky pixels are located 5 km or less from low clouds (Varnai and Marshak)

CALIPSO

(ColorRatio vs. Backscat close to and far from clouds)

Global night data over ocean

Fraction of cloud-free vertical profiles

CALIPSO

(ColorRatio vs. Backscat close to and far from clouds)

Global night data over ocean

Fraction of cloud-free vertical profiles

CALIOP vs. MODIS cloud mask

Behavior is similar using either cloud mask Daytime data over oceans during April 2007

(Varnai and Marshak)

MODIS reflectances increase near clouds

Reflectance increase may come from:

- Aerosol changes (e.g., swelling in humid air)
- Undetected cloud particles
- Instrument imperfections
- •3D radiative effects

Contribution to the Enhancement

 $\Delta I = \sum (\Delta I_a(z_i) + \Delta I_m(z_i)) + \Delta I_s$

Contribution from
Radiative interaction
Between cloud and
molecular layer above is
the major mechanism for
low clouds over dark
surface.

(e.g., Wen et al., 2008; Dave 1967; Platnick 2000)

Approach

- Estimate 3D cloud-induced radiance enhancement using the two-layer model
- > Retrieve aerosol optical thickness using MODIS algorithm
 - ♦ Model: the Two-Layer Model (Marshak et al., 2008)
 - ♦Inputs: 1. Rayleigh scattering optical depth
 - 2. Upward flux or albedo
 - ♦ Challenge: estimate narrowband flux

Two-layer model

$$\begin{split} \Delta R &= \frac{\alpha_c T_m(\tau_m, \Omega_0)}{1 - \alpha_c R_{m,diff}(\tau_m, \Omega)} [t_{m,diff}(\tau_m, \Omega) - e^{-\frac{\tau_m}{\mu}}] \\ R_{corr} &= R_{MODIS} - \Delta R \end{split}$$

Derive Narrowband Flux CERES Comes to Help

Assume that the **ratio** between the *observed* NB and BB fluxes is equal to that from *theoretical* computation.

$$F^{nb} \approx F_{obs}^{bb} \cdot \frac{F_{t}^{nb}}{F_{t}^{bb}}$$

For partly cloudy CERES footprint with cloud cover of *f*, reflected BB and NB fluxes are:

$$F_{t}^{nb} \approx f \cdot F_{cloud}^{nb} + (1 - f) \cdot F_{clear}^{nb}$$

$$F_{t}^{bb} \approx f \cdot F_{cloud}^{bb} + (1 - f) \cdot F_{clear}^{bb}$$

To compute cloud fluxes the logarithm of cloud optical depth weighted by cloud fraction is applied

$$\ln(\overline{\tau}) = \ln(f\widetilde{\tau}), \quad \widetilde{\tau} = \exp(\overline{\ln \tau_i})$$

RT model (τ , f, r_e) Correlated-k for BB Ocean BRDF Input from CERES

Steps in Aerosol Correction Scheme

- Estimate narrowband flux from CERES broadband flux
- Compute the radiance enhancement due to the interaction between cloud and molecular layer above using the Two-Layer Model
- Input a set of corrected radiance to MODIS Offline Model to retrieve aerosol optical thickness

Off West Coast of Africa

3.06 -13.14

1 = clear air 2 = cloud 3 = aerosol 4 = stratospheric layer

July 23, 2007

All Pixels at 0.47 µm

Corrected Pixels 0.47 µm

Angstrom Exponent Original vs Corrected

All Pixels

Angstrom Exponent Original vs Corrected

Corrected Pixels

Fraction of Small Mode AOT Original vs Corrected

All Pixels

Fraction of Small Mode AOT Original vs Corrected

Corrected Pixels

Original vs Corrected

Summary

- 1. CERES observed SW flux are used to derive narrowband flux;
- 2. Apply the Two-Layer Model to estimate 3D cloud induced radiance enhancement;
- 3. We are able to make corrections to the cloud adjacency effects due to the molecular layer above;
- 4. Correction for cloud adjacency effects leads to smaller Angstrom exponent and smaller fine mode fraction of aerosol optical thickness.
- 5. We are not able yet to correct for the surface effects.

Challenegs

- How to correct surface effects?
- Generalization over land?
- Validation?

Application to Aqua MODIS

Off West Coast of Africa

Consistency Check

Check the assumption for radiance

$$\frac{F_{obs}^{NB}}{F_{obs}^{BB}} \approx \frac{F_{mod}^{NB}}{F_{mod}^{BB}}$$

Radiance

All Pixels

Corrected Pixels

Angstrom Exponent Original vs Corrected

All Pixels

Angstrom Exponent Original vs Corrected

Pixels got corrected

Fraction of Small Mode AOT Original vs Corrected

All Pixels

Fraction of Small Mode AOT Original vs Corrected

Pixels got corrected

Original vs Corrected

Modeled SW TOA Radiance

Modeled upward SW flux for water clouds $\,\theta_{\,0}$ =45°

Fig. 2. TOA flux against $\ln(f\tilde{\tau})$ for liquid water clouds at $\theta_o = 44^{\circ}-46^{\circ}$. Loeb et al, 2005

Linearity between NB and BB

